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Chapter 5

Principles of Force Convection

5.1 Introduction

The preceding chapters have considered the mechanism and calculation of conduction
heat transfer. Convection was considered only insofar as it related to the boundary
conditions imposed on a conduction problem. We now wish to examine the methods
of calculating convection heat transfer and, in particular, the ways of predicting the

value of the convection heat-transfer coefficient /.

Our development in this chapter is primarily analytical in character and is concerned
only with forced-convection flow systems. Subsequent chapters will present empirical
relations for calculating forced-convection heat transfer and will also treat the subjects

of natural convection.
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5.2 Viscous Flow

5.2.1 Flow on a flat plate (external flow)

Consider the flow over a flat plate as shown in Figures 5.1 and 5.2. Beginning at the
leading edge of the plate, a region develops where the influence of viscous forces is
felt. These viscous forces are described in terms of a shear stress T between the fluid
layers. If this stress is assumed to be proportional to the normal velocity gradient, we

have the defining equation for the viscosity,
T= “2_; 5.1

The region of flow that develops from the leading edge of the plate in which the
effects of viscosity are observed is called the boundary layer. Some arbitrary point is
used to designate the y position where the boundary layer ends; this point is usually
chosen as the y coordinate where the velocity becomes 99 percent of the free-stream

value.

Initially, the boundary-layer development is laminar, but at some critical distance
from the leading edge, depending on the flow field and fluid properties, small
disturbances in the flow begin to become amplified, and a transition process takes
place until the flow becomes turbulent. The turbulent-flow region may be pictured as
a random churning action with chunks of fluid moving to and fro in all directions.

The transition from laminar to turbulent flow occurs when

u‘:;x = pu”;”x = Re > 5% 10° (transiant)

Re < 5% 10> (laminar)
Where
Ug= free stream velocity, m/s.

x = distance from leading edge, m.

. . . . 2
v = %zkmema‘uc viscosity, m/s.

UgoX

Re, = 5.2

v
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Figure 5.2: Laminar velocity profile on a flat plate.

5.3 Laminar Boundary Layer on a Flat Plate

Consider the elemental control volume shown in Figure 5.3. We derive the equation
of motion for the boundary layer by making a force-and-momentum balance on this
element.

To simplify the analysis we assume:

1. The fluid is incompressible and the flow is steady.

2. There are no pressure variations in the direction perpendicular to the plate.

3. The viscosity is constant.

4. Viscous-shear forces in the y direction are negligible.
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Figure 5.4 Elemental control volume for force balance on laminar boundary layer.

The mass continuity equation for the boundary layer.

ou ov
a+£—0 5.3

The momentum equation of the laminar boundary layer with constant properties.

ou ou 0’u  dp
U—+v—)=u——— 5.4
p( 6x+ ay) 'uayz ox
4
| |
S

ax

1 2
Figure 5.5: Elemental control volume for integral momentum analysis of laminar boundary
layer.

The mass flow through plane 1 in Figure 5.5 is
. H
Von Kéarman approximate solution of equations 5.3 and 5.4 gives
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4.64x
o=

1
ro /2

The exact solution of the boundary-layer equations

§ =X 55

Re;/ 2
The velosity profile of the stream in x-direction within the baundary layer is given by:
x _3y_1 (X)3 56
And the energy equation of the laminar boundary layer is:

— 5.7

aT aT T  u (6u)2
u— —=a— —
0x tv ay a dy? = pcp \dy

For low velocity incompressible flow, we have

oT oT a°T
ua+v5—aa—yz 5.8

There is a striking similarity between equation 5.8 and the momentum equation for
constant pressure,

ou ou 0%u
u— V—=a— .
ox t ay ay? 5.9

Example 5.1: Mass Flow and Boundary-Layer Thickness

Air at 27°C and 1 atm flows over a flat plate at a speed of 2 m/s. Calculate the
boundary-layer thickness at distances of 20 cm and 40 cm from the leading edge of
the plate. Calculate the mass flow that enters the boundary layer between x = 20 cm
and x = 40 cm. The viscosity of air at 27°C is 1.85x107 kg/m- s. Assume unit depth

in the z direction.

Solution
The density of air is calculated from

p _ 1.0132x10°

— = = I 3
P=%r (287)(27+273) 1.177 kg/m

U X

Re, = ”

UoX __ PUoX __ 1.177%2x0.2
v  u  1.85%x10-5

= 50,896

Atx = 20 cm: Re, = = 25,448

Upx 117752404
At x = 40 cm: Re, =222 =
u 1.85x10-5

The boundary layer thickness is calculated from:
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4.64x
6= Re;/2
Atx =20cm, § = =292 — 0,00582 m.
(25488) /2
Atx =40 cm, § = =222 — 0.00823 m.
(50896) /2

To calculate the mass flow that enters the boundary layer from the free stream
between x = 20 cm and x = 40 cm, we simply take the difference between the mass
flow in the boundary layer at these two x positions. At any x position the mass flow in

the boundary layer is given by the integral

: 5
m= [ pudy

3 1 (y\3
u=102%3-3(3)

m = apu Ez—l(gf dyzzpuwd

A = gpuoo (840 — 820) = 2(1.177 % 2(0.00823 — 0.00582) = 0.00354 kg/s

5.4 Thermal boundary layer

Just as the hydrodynamic boundary layer was defined as that region of the flow where
viscous forces are felt, a thermal boundary layer may be defined as that region where
temperature gradients are present in the flow. These temperature gradients would

result from a heat-exchange process between the fluid and the wall.

Consider the system shown in Figure 5.6. The temperature of the wall is T,,, the
temperature of the fluid outside the thermal boundary layer is T,,, and the thickness of
the thermal boundary layer is designated as §, . At the wall, the velocity is zero, and
the heat transfer into the fluid takes place by conduction. Thus the local heat flux per

unit area 1s:

a_ 5.10
A dy wall
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From Newton’s law of cooling

1= n(T, - T.) 5.11

where / is the convection heat-transfer coefficient. Combining these equations, we have

2T

h = —Lwal 5.12

T (T
J"I [

|,,
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[4=3 9T
dy A=k ,-]1 8

4
NT

W

Figure 5.6: Temperature profile in the thermal boundary layer.

Then we need only find the temperature gradiant at the wall to evaluate h. Therefore,
the temperature distribution is:

0 T-T, 3y 1(y)3
B  Too—Tw 208¢ 2

5.13

- -

-

-~ _7.'0 —Iv|

The thermal boundary layer can calculated from the equation below:

1) 1 -1 x 3/ 4 1/3
S _ 1 pp7s l1—(—°) l 5.14
) 1.026 X

When the plate is heated over the entire length, X, = 0, and

%1 p7s 5.15

HEAT TRANSFER 121



Dr. Tadahmun Ahmed Yassen Oy deal et o

Where the Prandtl number is dimensionless when a consistent set of units is used:

U
PT=£=k/p =Cp—” 5.16
a /pcp k

The local convective heat transfer coefficient is calculated from the equation as
below:

y
h, = 0.332k Pr'/s (%’)1/2 l1 - ("—0)3/4l ’ 5.17

X

The equation may be non-dimensionalized by multiplying both sides by %’ producing the

dimensionless group on the left side,
Nu, = — 5.18

called the Nusselt number after Wilhelm Nusselt, who made significant contributions to the
theory of convection heat transfer. Finally,

X

-1
3/ /3
Nu, = 0.332 Pr'/3Re, /2 [1 - ("—) 4] 5.19

or, for the plate heated over its entire length, X, = 0 and

Nu, = 0.332 Pr'/3Re, /2 0.6 < Pr > 50 5.20 2

Equation (5.20 a) is applicable to fluids having Prandtl numbers between about 0.6
and 50. It would not apply to fluids with very low Prandtl numbers like liquid metals
or to high- Prandtl-number fluids like heavy oils or silicones. For a very wide range of
Prandtl numbers, Churchill and Ozoe have correlated a large amount of data to give

the following relation for laminar flow on an isothermal flat plate:

1, pyt/
_ 0.3387Rey /2Pr’/3
0.0468 2/3 1/4

|1 (25) |

Equations (5.17), (5.19), and (5.20 a) express the local values of the heat-transfer

Nu,

Re,Pr > 100 520b

coefficient in terms of the distance from the leading edge of the plate and the fluid
properties. For the case where x, = 0 the average heat-transfer coefficient and
Nusselt number may be obtained by integrating over the length of the plate:

—  [¥hydx

h— fode = 2hx=L 521
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assuming the heated section is at the constant temperature T,,. For the plate heated

over the entire length,

N, =% = 2Nu,., 5.2
Or

Nu; = — = 0.664Re,"“Pr /3 5.23
Where:

Re, = ””:L 5.24

For a plate where heating starts at x = x,, it can be shown that the average heat
transfer coefficient can be expressed as

_ Xo 3/4-
Fyot = hyes (2LM>

L-x,

In this case, the total heat transfer for the plate would be

Qtotal = ExO—L(L — %) (T — Teo)

The foregoing analysis was based on the assumption that the fluid properties were

constant throughout the flow. When there is an appreciable variation between wall
and free-stream conditions, it is recommended that the properties be evaluated at the
so-called film temperature Ty , defined as the arithmetic mean between the wall and
free-stream temperature,

_ Tw+Tw

Tp = 5.25

Constant Heat Flux

The above analysis has considered the laminar heat transfer from an isothermal
surface. In many practical problems the surface heat flux is essentially constant, and
the objective is to find the distribution of the plate-surface temperature for given
fluid-flow conditions. For the constant-heat-flux case it can be shown that the local

Nusselt number is given by
Nu, = 0.453 Re, /2Pr'/3 5.26

HEAT TRANSFER 123



Dr. Tadahmun Ahmed Yassen Oy deal et o

which may be expressed in terms of the wall heat flux and temperature difference as

_ qwX
Nu, = T 5.27

Where:
Q. : heat flux, W/m?

Note that the heat flux q,, = % is assumed constant over the entire plate surface.

e 1 (L 1 L quwx
Ty —To =1 J (T — Too)dx = - f P

‘IWL/k
1
0.6795ReL/2Pr1/3

T, — Top = 5.28

qw = %hx=L(TW - TOO)

For constant heat flux case and the properties evaluated at the film temperature:

1 1
_ 0.4637Rey /2Pr'/3

0.0207 2/3 1/4
1+(*5) ]

Nu,

Re,Pr > 100 5.29

Example 5.1:

Air at 27°C and 1 atm flows over a flat plate at a speed of 2 m/s. Calculate the
boundary-layer thickness at distances of 20 cm and 40 cm from the leading edge of
the plate. Calculate the mass flow that enters the boundary layer between x = 20 cm
and x = 40 cm. The viscosity of air at 27°C is 1.85x107 kg/m- s. Assume unit depth
in the z direction.

Example 5.2:Isothermal Flat Plate Heated Over Entire Length

For the flow system in Example 5.1 assume that the plate is heated over its entire
length to a temperature of 60-C. Calculate the heat transferred in (a) the first 20 cm of
the plate and (b) the first 40 cm of the plate.

Solution

Tw+Teo o o
Tp = =5, T = 27°C, Uo, = 2m/s, T,,=60"C

60+27
2

=435+ 273 =316.5K

Tr =
We find the properties of air at film temperature.

v =17.36 x107® m’/s, Pr = 0.7 , k = 0.02749 W/m.C.

¢, = 1.006 Kj/kg. °C.
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Atx =20cm

Re, ==X = 202 __ _ 73041
v 17.36x10
ha

Nux = Tx

Nu, = 0.332 Pr'/3Re, 2 = 0.332 (0.7)"/3 + (23041) /2 = 44.74

0.02749

hy = Nu, = = 44.74 * = 6.15 W/m>. °C

The average value of the heat-transfer coefficient is twice this value, or

h=2h, =2%6.15=12.30

q = hA(T,, — T,,) = 12.3 x (0.2)(60 — 27) = 81.18 W

Atx =40 cm

Re, ==X — 207 _ _ 46082
v 17.36x10
h

Nu, = 0.332 Pr'/3Re, /2 = 0.332 (0.7) /3 * (46082) /2 = 63.28

Q02749 _ 4349 W/mZ. °C

hy = Nu,~ = 63.28 »

The average value of the heat-transfer coefficient is twice this value, or

h =2h, = 2 *4.349 = 8.698

q = hA(T,, — T,,) = 8.698 * (0.4)(60 — 27) = 114.8 W

EXAMPLE 5.3: Flat Plate with Constant Heat Flux

A 1.0-kW heater is constructed of a glass plate with an electrically conducting film
that produces a constant heat flux. The plate is 60 cm by 60 cm and placed in an
airstream at 27°C, 1 atm with u, =5 m/s. Calculate the average temperature
difference along the plate.

Solution

Properties should be evaluated at the film temperature, but we do not know the plate
temperature. for an initial calculation, we take the properties at the free-stream
conditions of

At T,, = 27 °C we find the properties of the fluid

v = 15.96 * 10~® m%/s, Pr = 0.708 , k = 0.02624 W/m."C.
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